Coota

AGT
Variety snapshot

- Highest yielding APH variety in early sown trials
- Slow maturity, suited to end of April – beginning of May sowing
- APH quality classification with low screenings and high test weights
- Very high grain yield and broad adaption
- Short plant height
- Alternative to LRPB Lancer℠, EGA Gregory℠, Coolah℠ and LRPB Flanker℠
Breeder’s comments

Cootaa, bred by our team at Wagga Wagga, has been released to compliment the high yielding, AH quality, mid season maturing varieties Beckoma and Sceptera; offering an earlier sowing opportunity, APH quality, as well as maintaining the high yield potential that growers expect out of new varieties.

Cootaa performs best when sown in its optimal window from late April to mid May. Cootaa has shown excellent adaptation to southern NSW, setting a new yield benchmark for APH varieties in this sowing window.

By combining excellent grain size, short stature and low black-point risk, Cootaa is a variety that can be relied on to perform.

Unlike taller varieties EGA Gregorya, Coolaha and LRPB Flankera, Cootaa has very good lodging tolerance, similar to, or better than LRPB Lancera.

In comparison to LRPB Lancera, Cootaa has shown higher yields in southern NSW, with an impressive advantage of more than 13% on average in AGT and NVT trials.

The yield performance, physical grain quality package and agronomic traits of Cootaa lend it to flexibility across high and low yield potential zones. High grain yield potential, short plant height and tolerance to lodging make Cootaa a good option in high rainfall, high input and irrigated environments, whilst it’s excellent grain package can help in minimising risk in less favourable conditions where screenings can be an issue.

Seed availability

Commercial quantities of Cootaa may be available through AGT Affiliates, or your local retailer. Please consult the AGT website for AGT Affiliate contact details. Cootaa is able to be traded between growers upon the completion of a License Agreement as part of AGT’s Seed Sharing™ initiative.

PBR and EPR

Cootaa is protected by Plant Breeders Rights (PBR) and all production (except seed saved for planting) is liable to an End Point Royalty (EPR), which funds future plant breeding. Cootaa growers will be subject to a Growers License Agreement that acknowledges that an EPR of $3.60/tonne + GST has to be paid on all production other than seed saved for planting.
Maturity & sowing window

Coota® is a slow spring wheat, offering growers a true late April to early May APH sowing option. Figure 1 highlights the maturity of Coota® compared to other similar maturing APH wheat varieties (with the preferred sowing window being late April). This data suggests that Coota® has a relatively flexible maturity by delaying heading when sown earlier than optimal, but also maturing quicker when planted later. This can help reduce the risk of flowering outside the optimum flowering window and being compromised by either frost or heat/moisture stress.

Figure 1 Head emergence of Coota® relative to comparators (optimal sowing window highlighted).

Source AGT time of sowing trial, Kabinia Research Centre 2019
Grain yield

Coota® offers growers in southern NSW a high, stable yielding APH variety for early-main sowing opportunities. It performs best when sown in late April to early May (Figures 2 & 3). When sown in this window Coota® has shown large yield improvements over similar maturing APH varieties such as LRPB Lancer®, EGA Gregory®, LRPB Flanker® and Coolah®.

Figure 2 Grain yield of Coota® across southern NSW – AGT data

![Figure 2](image-url)

Source: AGT long term MET analysis, early sown trials 2015-2019

() Number of trials that each variety was present in across the dataset [30 trials]

Figure 3 Grain yield of Coota® across southern NSW – NVT data

![Figure 3](image-url)

Source: NVT long term MET analysis, early sown trial series 2015-2019

[] Total number of trials per region

() Number of trials that each variety was present in across the southern NSW dataset [46]
Disease, agronomy and grain quality

Whilst Coota\(^b\) exhibits excellent yield potential compared to similar maturing APH comparators, it also ticks many boxes for agronomic traits.

Coota\(^b\) has an excellent grain quality package (Figures 4 & 5) with very low screenings and high test weights. This may allow growers to sow Coota\(^b\) into paddocks with high residual nitrogen levels or alternatively apply extra nitrogen to achieve higher protein content with a comparatively low risk of producing screenings.

Coota\(^b\) is short in plant height and has robust lodging resistance making it an excellent choice for irrigation.

Figure 4 Screenings of Coota\(^b\) versus comparators

Source: NVT early sown trial series 2019 [7 trials]
Figure 5 *Test weight of Coota*

![Graph showing test weight comparison](image)

Source NVT early sown trial series 2019 [7 trials]

Table 1 *Variety comparisons*

<table>
<thead>
<tr>
<th></th>
<th>Coota<sup>h</sup></th>
<th>LRPB Lancer<sup>h</sup></th>
<th>EGA Gregory<sup>h</sup></th>
<th>Coolah<sup>h</sup></th>
<th>LRPB Flanker<sup>h</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality classification</td>
<td>APH</td>
<td>APH</td>
<td>APH</td>
<td>APH</td>
<td>APH</td>
</tr>
<tr>
<td>Stem rust</td>
<td>MS</td>
<td>R</td>
<td>MR</td>
<td>MR</td>
<td>MR</td>
</tr>
<tr>
<td>Stripe rust</td>
<td>MRMS</td>
<td>MR</td>
<td>RMR</td>
<td>RMR</td>
<td>RMR/MSS</td>
</tr>
<tr>
<td>Leaf rust</td>
<td>MS</td>
<td>RMR/MS</td>
<td>MRMS/MS</td>
<td>MR</td>
<td>RMR/MSS</td>
</tr>
<tr>
<td>Yellow leaf spot</td>
<td>MSS</td>
<td>MRMS</td>
<td>S</td>
<td>MSS</td>
<td>MSS</td>
</tr>
<tr>
<td>CCN</td>
<td>MR</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Septoria tritici blotch</td>
<td>MSS</td>
<td>MS</td>
<td>MSS</td>
<td>MSS</td>
<td>MSS</td>
</tr>
<tr>
<td>Black point</td>
<td>MRMS</td>
<td>MRMS</td>
<td>MSS</td>
<td>S</td>
<td>MS</td>
</tr>
<tr>
<td>Crown rot</td>
<td>MSS</td>
<td>MSS</td>
<td>S</td>
<td>MSS</td>
<td>MSS</td>
</tr>
<tr>
<td>Plant height</td>
<td>Short</td>
<td>Short</td>
<td>Tall</td>
<td>Tall</td>
<td>Tall</td>
</tr>
</tbody>
</table>

R Resistant
MR Moderately Resistant
MS Moderately Susceptible
S Susceptible
VS Very Susceptible
T Tolerant
MT Moderately Tolerant
MI Moderately Intolerant
I Intolerant
VI Very Intolerant

Source / NSW DPI Winter Crop Variety Sowing Guide 2020, NVT and AGT data
Disclaimer / The information contained in this brochure is based on knowledge and understanding at the time of writing. Growers should be aware of the need to regularly consult with their advisors on local conditions and currency of information.